
www.manaraa.com

The Amoeba Distributed Operating System

Andrew S. Tanenbaum & Gregory J. Sharp
Vrije Universiteit

De Boelelaan 1081a
Amsterdam, The Netherlands

Email: ast@cs.vu.nl, gregor@cs.vu.nl

1. INTRODUCTION

Roughly speaking, we can divide the history of modern computing into the
following eras:

d 1970s: Timesharing (1 computer with many users)

d 1980s: Personal computing (1 computer per user)

d 1990s: Parallel computing (many computers per user)

Until about 1980, computers were huge, expensive, and located in computer centers.
Most organizations had a single large machine.

In the 1980s, prices came down to the point where each user could have his or her
own personal computer or workstation. These machines were often networked together,
so that users could do remote logins on other people’s computers or share files in various
(often ad hoc) ways.

Nowadays some systems have many processors per user, either in the form of a
parallel computer or a large collection of CPUs shared by a small user community. Such
systems are usually called parallel or distributed computer systems.

This development raises the question of what kind of software will be needed for
these new systems. To answer this question, a group under the direction of Prof.
Andrew S. Tanenbaum at the Vrije Universiteit (VU) in Amsterdam (The Netherlands)
has been doing research since 1980 in the area of distributed computer systems. This
research, partly done in cooperation with the Centrum voor Wiskunde en Informatica
(CWI), has resulted in the development of a new distributed operating system, called
Amoeba, designed for an environment consisting of a large number of computers.

Amoeba is available for free to universities and other educational institutions and
for special commercial prices and conditions to corporate, government, and other users,
as described later.

2. WHAT IS AMOEBA?

Amoeba is a general-purpose distributed operating system. It is designed to take a
collection of machines and make them act together as a single integrated system. In
general, users are not aware of the number and location of the processors that run their
commands, nor of the number and location of the file servers that store their files. To
the casual user, an Amoeba system looks like a single old-fashioned time-sharing
system.

www.manaraa.com

- 2 -

Amoeba is an ongoing research project. It should be thought of as a platform for
doing research and development in distributed and parallel systems, languages, protocols
and applications. Although it provides some UNIX emulation, and has a definite
UNIX-like flavor (including over 100 UNIX-like utilities), it is NOT a plug-compatible
replacement for UNIX. It should be of interest to educators and researchers who want
the source code of a distributed operating system to inspect and tinker with, as well as to
those who need a base to run distributed and parallel applications.

Amoeba is intended for both ‘‘distributed’’ computing (multiple independent users
working on different projects) and ‘‘parallel’’ computing (e.g., one user using 50 CPUs
to play chess in parallel). Amoeba provides the necessary mechanism for doing both
distributed and parallel applications, but the policy is entirely determined by user-level
programs. For example, both a traditional (i.e. sequential) ‘make’ and a new parallel
‘amake’ are supplied.

3. DESIGN GOALS

The basic design goals of Amoeba are:

d Distribution—Connecting together many machines

d Parallelism—Allowing individual jobs to use multiple CPUs easily

d Transparency—Having the collection of computers act like a single system

d Performance—Achieving all of the above in an efficient manner

Amoeba is a distributed system, in which multiple machines can be connected
together. These machines need not all be of the same kind. The machines can be spread
around a building on a LAN. Amoeba uses the high performance FLIP network protocol
for LAN communication. If an Amoeba machine has more than one network interface it
will automatically act as a FLIP router between the various networks and thus connect
the various LANs together.

Amoeba is also a parallel system. This means that a single job or program can use
multiple processors to gain speed. For example, a branch and bound problem such as the
Traveling Salesman Problem can use tens or even hundreds of CPUs, if available, all
working together to solve the problem more quickly. Large ‘‘back end’’
multiprocessors, for example, can be harnessed this way as big ‘‘compute engines.’’

Another key goal is transparency. The user need not know the number or the
location of the CPUs, nor the place where the files are stored. Similarly, issues like file
replication are handled largely automatically, without manual intervention by the users.

Put in different terms, a user does not log into a specific machine, but into the
system as a whole. There is no concept of a ‘‘home machine.’’ Once logged in, the user
does not have to give special remote login commands to take advantage of multiple
processors or do special remote mount operations to access distant files. To the user, the
whole system looks like a single conventional timesharing system.

Performance and reliability are always key issues in operating systems, so
substantial effort has gone into dealing with them. In particular, the basic
communication mechanism has been optimized to allow messages to be sent and replies

www.manaraa.com

- 3 -

received with a minimum of delay, and to allow large blocks of data to be shipped from
machine to machine at high bandwidth. These building blocks serve as the basis for
implementing high performance subsystems and applications on Amoeba.

4. SYSTEM ARCHITECTURE

Since distributed and parallel computing is different from personal computing, it is
worthwhile first describing the kind of hardware configuration for which Amoeba was
designed. A typical Amoeba system will consist of three functional classes of machines.
First, each user has a workstation for running the user interface, the X window system.
This workstation can be a typical engineering workstation, or a specialized X terminal.
It is entirely dedicated to running the user interface, and does not have to do other
computing.

Second, there exists a pool of processors that are dynamically allocated to users as
required. These processors can be part of a multiprocessor or multicomputer, be a
collection of single-board computers or be a group of workstations allocated for this
purpose. Usually, each pool processor has several megabytes of private memory, that is,
pool processors need not have any shared memory (but it is not forbidden).
Communication is performed by sending packets over the LAN. All the heavy
computing happens in the processor pool.

Third, there are specialized servers, such as file servers and directory servers that
run all the time. They may run on processor pool processors, or on dedicated hardware,
as desired.

All these components must be connected by a fast LAN. At present only Ethernet
is supported, but ports to other LANs are possible.

5. FUNDAMENTAL CONCEPTS IN AMOEBA

The following sections briefly provide an introduction to Amoeba and some of its
characteristics.

5.1. Microkernel + Server Architecture

Amoeba was designed with what is currently termed a microkernel architecture.
This means that every machine in an Amoeba system runs a small, identical piece of
software called the kernel. The kernel supports the basic process, communication, and
object primitives. It also handles raw device I/O and memory management. Everything
else is built on top of these fundamentals, usually by user-space server processes.

Thus the system is structured as a collection of independent processes. Some of
these are user processes, running application programs. Such processes are called
clients. Others are server processes, such as the Bullet file server or the directory server.
The basic function of the microkernel is to provide an environment in which clients and
servers can run and communicate with one another.

This modular design makes it easier to understand, maintain, and modify the
system. For example, since the file server is an isolated server, rather than being an
integral part of the operating system, it is possible for users to implement new file
servers for specialized purposes (e.g. NFS, database). In conventional systems, such as

www.manaraa.com

- 4 -

UNIX, adding additional user-defined file systems is infeasible.

5.2. Threads

In many traditional operating systems, a process consists of an address space and a
single thread of control. In Amoeba, each process has its own address space, but it may
contain multiple ‘‘threads of control’’ (threads). Each thread has its own program
counter and its own stack, but shares code and global data with all the other threads in its
process.

Having multiple threads inside each process is convenient for many purposes and
fits into the model of distributed and parallel computing very well. For example, a file
server may have multiple threads, each thread initially waiting for a request to come in.
When a request comes in, it is accepted by some thread, which then begins processing it.
If that thread subsequently blocks waiting for disk I/O, other threads can continue.
Despite their independent control, however, all the threads can access a common block
cache, using semaphores to provide inter-thread synchronization. This design makes
programming servers and parallel applications much easier.

Not only are user processes structured as collections of threads communicating by
RPC, but the kernel is as well. In particular, threads in the kernel provide access to
memory management services.

5.3. Remote Procedure Call

Threads often need to communicate with one another. Threads within a single
process can just communicate via the shared memory, but threads located in different
processes need a different mechanism. The basic Amoeba communication mechanism is
the remote procedure call (RPC). Communication consists of a client thread sending a
message to a server thread, then blocking until the server thread sends back a return
message, at which time the client is unblocked.

To shield the naive user from these details, special library procedures, called stubs ,
are provided to access remote services. Amoeba has a special language called Amoeba
Interface Language (AIL) for automatically generating these stub procedures. They
marshal parameters and hide the details of the communication from the users.

5.4. Group Communication

For many applications, one-to-many communication is needed, in which a single
sender wants to send a message to multiple receivers. For example, a group of
cooperating servers may need to do this when a data structure is updated. It is also
frequently needed for parallel programming. Amoeba provides a basic facility for
reliable, totally-ordered group communication, in which all receivers are guaranteed to
get all group messages in exactly the same order. This mechanism simplifies many
distributed and parallel programming problems.

www.manaraa.com

- 5 -

5.5. Objects and Capabilities

There are two fundamental concepts in Amoeba: objects and capabilities. All
services and communication are built around them.

An object is conceptually an abstract data type. That is, an object is a data structure
on which certain operations are defined. For example, a directory is an object to which
certain operations can be applied, such as ‘‘enter name’’ and ‘‘look up name.’’

Amoeba primarily supports software objects, but hardware objects also exist. Each
object is managed by a server process to which RPCs can be sent. Each RPC specifies
the object to be used, the operation to be performed, and any parameters to be passed.

When an object is created, the server doing the creation constructs a 128-bit value
called a capability and returns it to the caller. Subsequent operations on the object
require the user to send its capability to the server to both specify the object and prove
the user has permission to manipulate the object. Capabilities are protected
cryptographically to prevent tampering. All objects in the entire system are named and
protected using this one simple, transparent scheme.

5.6. Memory Management

The Amoeba memory model is simple and efficient. A process’ address space
consists of one or more segments mapped onto user-specified virtual addresses. When a
process is executing, all its segments are in memory. There is no swapping or paging at
present, thus Amoeba can only run programs that fit in physical memory. The primary
advantage of this scheme is simplicity and high performance. The primary disadvantage
is that it is not possible to run programs larger than physical memory.

5.7. Input/Output

I/O is also handled by kernel threads. To read raw blocks from a disk, for example,
a user process having the appropriate authorization, does RPCs with a disk I/O thread in
the kernel. The caller is not aware that the server is actually a kernel thread, since the
interface to kernel threads and user threads is identical. Generally speaking, only file
servers and similar system-like processes communicate with kernel I/O threads.

6. SOFTWARE OUTSIDE THE KERNEL

The job of the Amoeba microkernel is to support threads, RPC, memory
management and I/O. Everything else is built on top of these primitives.

6.1. Bullet File Server

The standard Amoeba file server has been designed for high performance and is
called the Bullet server. It stores files contiguously on disk, and caches whole files
contiguously in core. Except for very large files, when a user program needs a file, it
will request that the Bullet server send it the entire file in a single RPC. A dedicated
machine with at least 16 MB of RAM is needed for the Bullet file server for installation
(except on the Sun 3 where there is a maximum of 12 MB). The more RAM the better,
in fact. The performance is improved with a larger file cache. The maximum file size is
also limited by the amount of physical memory available to the Bullet server.

www.manaraa.com

- 6 -

6.2. Directory Server

In contrast to most other operating systems file management and file naming are
separated in Amoeba. The Bullet server just manages files, but does not handle naming.
It simply reads and writes files, specified by capabilities. A capability can be thought of
as a kind of handle for an object, such as a file. A directory server maps ASCII strings
onto capabilities. Directories contain (ASCII string, capability) pairs; these capabilities
will be for files, directories, and other objects. Since directories may contain capabilities
for other directories, hierarchical file systems can be built easily, as well as more general
structures.

A directory entry may contain either a single capability or a set of capabilities, to
allow a file name to map onto a set of replicated files. When the user looks up a name in
a directory, the entire set of capabilities is returned, to provide high availability. These
replicas may be on different file servers, potentially far apart (the directory server has no
idea about what kind of objects it has capabilities for or where they are located).
Operations are provided for managing replicated files in a consistent way.

6.3. Compilers

Amoeba comes standard with compilers for ANSI standard C, Pascal, Modula 2,
BASIC, and Fortran 77. Each of these comes with appropriate libraries. Amoeba also
comes with a collection of third-party software, including the GNU C compiler.

6.4. Parallel Programming

A new language called Orca has been developed. It is for parallel programming.
Orca allows programmers to create user-defined data types which processes on different
machines can share in a controlled way, in effect simulating an object-based distributed
shared memory over a LAN. Operations on each object are performed in such a way as
to provide the illusion of there being only a single copy, shared by all machines. The
Orca run-time system uses the Amoeba IPC facilities to make sharing of software
objects over the network highly efficient. Orca is available separately from the Vrije
Universiteit.

6.5. Utilities

Amoeba provides a large number of utilities modeled after the programs that come
with UNIX. Among others, these include awk, basename, cal, cat, cdiff, chmod, cmp,
comm, compress, cp, cpdir, dd, diff, echo, ex, expr, factor, file, find, fold, fortune, grep,
head, jove, kill, ksh, ln, look, ls, m4, make, mkdir, more, mv, od, pr, prep, printenv, pwd,
quote, rev, rm, rmdir, sed, sh, shar, size, sleep, sort, spell, split, strings, sum, tail, tar,
tee, termcap, test, time, touch, tr, treecmp, true, tset, tsort, tty, uniq, uud, uue, vi, wc,
who, xargs, yacc and many other old favorites. Furthermore, a number of new programs
are provided such as amake, a highly parallel configuration manager.

www.manaraa.com

- 7 -

6.6. UNIX Emulation

To aid in porting UNIX programs to the Amoeba environment, an emulation
library, called Ajax, offers major POSIX P1003.1 compatibility. Most POSIX
conformant programs work without modification. They simply have to be compiled and
linked on Amoeba.

6.7. TCP/IP

Although the basic communication mechanism in Amoeba is the Amoeba FLIP
protocol, a special server is provided to allow TCP/IP communication, through RPCs to
the TCP/IP server. In this way, machines can be accessed through the Internet.

6.8. X Windows

Amoeba’s user interface is the industry standard X Window System (X11R6). For
X servers running on workstations, a special version of X is available that uses the
Amoeba RPC for high-performance communication. When hard-wired X terminals are
used, these can be interfaced using the TCP/IP server.

6.9. Connection to UNIX

A special UNIX driver is provided with Amoeba that can be linked into a SunOS
4.1.1 (or higher) UNIX kernel, allowing UNIX programs to communicate with Amoeba
programs. It is also possible, as stated before, to use TCP/IP for this communication
(e.g., for non-Sun machines), but the feature described here is much faster and less
complex if Sun workstations are available. Utilities are provided to transfer files
between UNIX and the Bullet file server.

7. NONTECHNICAL ASPECTS OF AMOEBA

7.1. Source Code Availability

All academic Amoeba distributions contain the entire source code. Binaries for the
supported machines are also included.

7.2. Amoeba is Unencumbered by AT&T Licensing

Amoeba was written from scratch. Although it provides a partial POSIX
emulation, it contains no AT&T code whatsoever. Furthermore, the utility programs it
comes with have either been written from scratch or obtained from third parties under
favorable conditions. Although customers are required to agree to our license, no
additional licensing is needed for Amoeba.

7.3. Documentation

Amoeba comes with over 1000 pages of documentation. It is organized in several
volumes:

d A collection of published scientific papers describing the basic ideas.

www.manaraa.com

- 8 -

d A users’ guide (how to work with Amoeba; man pages for the utility programs).

d A programmers’ guide (writing clients/servers; man pages for library routines).

d A system administrators’ guide (how to operate and maintain Amoeba).

d Release notes (bibliography, changes, bug information, etc.).

All the documentation is freely available by the World-Wide Web URL:

http://www.am.cs.vu.nl/

and via anonymous FTP from the following sites. See the README files there for
further details.

222
Location Site Name Directory222
Europe VU ftp.cs.vu.nl amoeba222
USA UCSC ftp.cse.ucsc.edu pub/amoeba2221
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

7.4. Machines on which Amoeba Runs

Amoeba currently runs on the following architectures:

d Sun 4c and MicroSPARC SPARCstations

d Intel 386/486/Pentium/Pentium Pro (IBM AT bus, PCI bus)

d 68030 VME-bus boards (Force CPU-30)

d Sun 3/60 & Sun 3/50 workstations

7.5. Configuration Required

Amoeba is a heterogeneous distributed system. Although in theory work can be
done on a single machine, in practice more than one machine is required. We
recommend at least five machines: a file server, a workstation and 3 pool processors.
The more pool processors the better. Any combination of of the supported machines can
be used.

d Minimum configuration for a SPARCstation system:
File server: ≥ 16 MB RAM, a 300 MB disk, a SCSI tape drive.
Workstation: ≥ 8MB RAM, monitor, keyboard, mouse.
Pool processor: ≥ 8 MB RAM.

d Minimum configuration for 386/486/Pentium systems:
File server: ≥ 16 MB RAM, a 300 MB disk, 3.5" floppy drive, Ethernet card, VGA
card, keyboard, monitor, mouse.
Workstation: ≥ 8 MB RAM, Ethernet card, VGA card, keyboard, monitor, mouse.

www.manaraa.com

- 9 -

Pool processor: ≥ 4 MB RAM, 3.5" floppy drive, Ethernet card.

Supported Ethernet cards: SMC/WD 8013, NE 2100, NE2000, 3Com 503

d Minimum configuration for a Sun 3/60 system:
File server: exactly 12 MB RAM, a 300 MB disk, a QIC-24 tape drive.
Workstation: ≥ 4 MB RAM, monochrome monitor, keyboard, mouse.
Pool processor: ≥ 4 MB RAM.

Sun 3/50s can also be used for pool processors and workstations.

Amoeba is normally distributed by FTP, Exabyte tape, QIC-150 or QIC-24
streamer tape. The distribution is about 120 MB of source, documents and binaries. For
each architecture a different subtree will be generated, and each binary tree will need
another 80 MB. The large size is due to the X libraries compiled into the binaries. The
X sources are not included. However, the changes to the X sources needed for Amoeba
are provided.

For embedded applications, where the file server is not necessary and only the
kernel is being used, it is possible to run the Amoeba kernel on a single CPU. Some
installations are running Amoeba in kernel-only mode, in effect using it as a distributed
high-performance kernel for industrial process control applications.

7.6. Pricing

Amoeba is available free to universities that have FTP or WWW access to the
Internet, and for $US 500 on Exabyte or DAT tape to those that do not. Printed sets of
the manuals can be obtained for $US 500 each.

Commercial licenses and support are provided by ACE, b.v. in Amsterdam. Send
email to amoeba@ace.nl for information on products and pricing.

7.7. Support

Amoeba is provided to universities on an ‘‘as is’’ basis, with no support. Although
Amoeba is still an experimental system, rather than a production quality polished
product (e.g., the UNIX emulation is not 100% complete), it can still be highly useful to
anyone interested in distributed systems.

7.8. Ordering Procedure

Amoeba is copyrighted software. It is available free to universities under a
‘‘shrink-wrap’’ license in which the university agrees to use Amoeba only for
educational and research work, to not hold us legally responsible for the consequences of
bugs in Amoeba, and all the usual stuff lawyers think of. To FTP Amoeba you must
register to obtain an FTP login name and password. This is done via the World-Wide
Web URL

http://www.am.cs.vu.nl/

If you FTP any part of Amoeba then you agree to be bound to the license.

University customers not having FTP access and all nonuniversity customers must

www.manaraa.com

- 10 -

sign a commercial license agreement in which their rights and obligations are explicitly
spelled out. If you wish to engage in joint research with the Vrije Universiteit then
special free licenses are available. To obtain an academic or joint research license,
please contact us by email or FAX, being sure to include the postal address to which the
license is to be sent. Licenses cannot be sent by FAX or electronically.

Email address: amoeba-license@cs.vu.nl
FAX: +31 20 4447653

Once the signed license is returned, universities will be sent the tapes. If printed
copies of the manuals are required these can be ordered at the same time. This is exactly
the same documentation that is available by FTP, as described in Sec. 7.3 above.

To obtain a commercial license please send email to ACE, b.v.

Email address: amoeba@ace.nl

8. SUMMARY

Amoeba is a modern distributed operating system that is designed for an
environment consisting of multiple computers. Its major properties are summarized as
follows:

Amoeba Architectural Features
- Transparent distributed computing using a large number of processors
- Parallel computing supported as well as distributed computing
- Microkernel + server architecture
- High performance RPC using the FLIP protocol
- Reliable, totally-ordered group communication
- Support for heterogeneous systems (e.g., Sun-3, Sun-4 and 386 on the same net)
- Automatic, transparent network configuration

User-level Software
- Object-based
- Multiple threads per address space
- File and directory servers provided (including automatic file replication)
- X windows, release 5 supported
- TCP/IP supported
- ANSI C, Pascal, FORTRAN 77, and Modula 2 compilers and libraries provided
- Language for parallel programming (Orca) available

UNIX
- Good integration with existing UNIX systems
- Amoeba can talk to UNIX via TCP/IP
- Driver available for Sun UNIX to let UNIX use fast Amoeba RPC protocol
- X terminal can have both UNIX and Amoeba windows simultaneously
- Partial UNIX emulation available (good enough to run the MMDF mail system)
- Over 100 UNIX-like utilities available

Commercial Aspects

www.manaraa.com

- 11 -

- Full source code (except the compilers) is included in all distributions
- No AT&T license is required
- Limited commercial support available
- Amoeba has already been licensed by major organizations in USA, Europe and Japan

Weak Points In Amoeba
- Over 1000 pages of documentation supplied
- Not binary compatible with UNIX
- No virtual memory (for performance reasons)
- Works poorly when there is insufficient memory
- No NFS support
- While fine for experimenting, it is not a totally polished production system

9. BIBLIOGRAPHY

1. Kaashoek, M.F., Renesse, R. van, Staveren, H. van, and Tanenbaum, A.S.:
"FLIP: an Internetwork Protocol for Supporting Distributed Systems," ACM
Trans. on Computer Systems vol 11, pp. 73-106, Feb. 1993.

2. Kaashoek, M.F., Tanenbaum, A.S., Verstoep, K.: "Using Group
Communication to Implement a Fault-Tolerant Directory Service," Thirteenth
Int’l Conf. on Distributed Computing Systems , IEEE, pp. 130-139, 1993.

3. Kaashoek, M.F., Tanenbaum, A.S., and Verstoep, K.: "Group Communication
in Amoeba and its Applications" , Distributed Systems Engineering J. vol. 1,
pp. 48-58, July 1993.

4. Tanenbaum, A.S., Kaashoek, M.F., and Bal, H.E.: "Parallel Programming
Using Shared Objects and Broadcasting," IEEE Computer vol. 25, pp. 10-19,
Aug. 1992.

5. Kaashoek, M.F., Tanenbaum, A.S., and Verstoep, K.: "A Comparison of Two
Paradigms for Distributed Computing," Proc. Fifth ACM SIGOPS Workshop ,
Le Mont St. Michel, France, Sept. 1992.

6. Levelt, W.G., Kaashoek, M.F. Bal, H.E., and Tanenbaum, A.S., " A
Comparison of Two Paradigms for Distributed Shared Memory," Software
Practice & Experience , vol. 22, pp. 985-1010, Nov. 1992.

7. Tanenbaum, A.S., Kaashoek, M.F., Renesse, R. van, and Bal, H.: "The Amoeba
Distributed Operating System - A Status Report," Computer Communications ,
vol. 14, pp. 324-335, July/Aug. 1991.

8. Douglis, F., Ousterhout, J.K., Kaashoek, M.F., and Tanenbaum, A.S.: "A
Comparison of Two Distributed Systems: Amoeba and Sprite," Computing

www.manaraa.com

- 12 -

Systems Journal vol 4., pp. 353-384, Fall 1991.

9. Tanenbaum, A.S., Renesse, R. van, Staveren, H. van., Sharp, G.J., Mullender,
S.J., Jansen, J., and Rossum, G. van: "Experiences with the Amoeba
Distributed Operating System," Commun. of the ACM vol. 33, pp. 46-63, Dec.
1990.

10. Renesse, R. van, Staveren, H. van, and Tanenbaum, A.S.: "Performance of the
Amoeba Distributed Operating System," Software—Practice and Experience ,
vol. 19, pp. 223-234, March 1989.

11. Baalbergen, E.H.: "Design and Implementation of Parallel Make," Computing
Systems , vol. 1, pp. 135-158, Spring 1988.

12. Tanenbaum, A.S., Mullender, S.J., and van Renesse, R.: "Using Sparse
Capabilities in a Distributed Operating System" Proc. Sixth International
Conf. on Distr. Computer Systems , IEEE, pp. 558-563, 1986.

